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Despite the temporal and spatial complexity of common fluid flows, model dimensionality can often
be greatly reduced while both capturing and illuminating the nonlinear dynamics of the flow. This
work follows the methodology of direct numerical simulation �DNS� followed by proper orthogonal
decomposition �POD� of temporally sampled DNS data to derive temporal and spatial
eigenfunctions. The DNS calculations use Chorin’s projection scheme; two-dimensional validation
and results are presented for driven cavity and square cylinder wake flows. The flow velocity is
expressed as a linear combination of the spatial eigenfunctions with time-dependent coefficients.
Galerkin projection of these modes onto the Navier-Stokes equations obtains a dynamical system
with quadratic nonlinearity and explicit Reynolds number �Re� dependence. Truncation to retain
only the most energetic modes produces a low-dimensional model for the flow at the decomposition
Re. We demonstrate that although these low-dimensional models reproduce the flow dynamics, they
do so with small errors in amplitude and phase, particularly in their long term dynamics. This is a
generic problem with the POD dynamical system procedure and we discuss the schemes that have
so far been proposed to alleviate it. We present a new stabilization algorithm, which we term
intrinsic stabilization, that projects the error onto the POD temporal eigenfunctions, then modifies
the dynamical system coefficients to significantly reduce these errors. It requires no additional
information other than the POD. The premise that this method can correct the amplitude and phase
errors by fine-tuning the dynamical system coefficients is verified. Its effectiveness is demonstrated
with low-dimensional dynamical systems for driven cavity flow in the periodic regime,
quasiperiodic flow at Re=10000, and the wake flow. While derived in a POD context, the algorithm
has broader applicability, as demonstrated with the Lorenz system. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2723149�

I. INTRODUCTION

One route to extracting a higher level of information
from numerical or experimental data is to look for the coher-
ent structures in the flow as identified by the proper orthogo-
nal decomposition �POD�. This decomposition represents the
flow field as a linear combination of spatial and temporal
basis functions derived from the statistics of the sampled
flow field �snapshots�. Moreover, it orders the modes by their
importance in the flow reconstruction, so that significant data
reduction can be achieved by neglecting the least important
terms with quantifiable negligible loss in the accuracy of the
representation. This process allows one to see the important
structures in the flow.

A further step is needed to gain dynamical information
from the POD. This can be done by first replacing the flow
variables in the Navier-Stokes equations by their POD ex-
pansions, leaving the Reynolds number �Re� as a parameter.

A Galerkin projection onto the spatial basis functions results
in a set of ordinary differential equations representing a dy-
namical system whose solution at the Reynolds number of
simulation is a model of the dynamics of full DNS simula-
tion. It is practical and convenient to truncate this model to
obtain a low-dimensional system. The degree to which this
system’s dynamics reproduce the original time-dependence
is a measure of the low-dimensional model’s fidelity and
usefulness.

It is of further interest for this model to reproduce the
dynamics of the full system away from the decomposition
Reynolds number, for such a valid model would allow pre-
dictions of flow behavior in regimes where no DNS has been
performed. Thus much more information can be obtained by
doing a parameter continuation based on the Reynolds num-
ber �Re�. This is the key to investigating flow transitions
since now they are equivalent to bifurcation phenomena in
the dynamical system. However, one impediment to this goal
is the failure of the dynamical system to exhibit the correct
asymptotic behavior even at the modeled Reynolds number.
Holmes et al.1 note several probable causes for this defi-
ciency:
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• loss of the natural energy cascade due to low-dimensional
truncation,

• numerical error in the dynamical system coefficients, par-
ticularly those involving derivatives,

• neglect of boundary or pressure terms in the computation
of the dynamical system coefficients �problem and domain
dependent�, and

• an incomplete basis as another consequence of truncation
which implies that only velocity fields close to the spatial
structures of the ensemble average will be reproduced
well.

The impact of the last point on the validity of the dynamical
system has been addressed by Rempfer,2 and others have
sought to augment the POD spatial basis to attain better rep-
resentation, e.g., Bangia et al.3 and Jørgensen et al.4 In par-
ticular, the unstable steady flow field might not be adequately
represented by the POD spatial basis, hence not a solution of
the derived dynamical system. Noack et al.5 have shown that
the addition of a mean-shift mode is a means of stabilizing
the derived dynamical system and compensating for missing
phase space directions.

In contrast, we present a means to improve the accuracy
and stability of the dynamical system itself without directly
addressing the source of the error. This is possible by recog-
nizing that the POD process can provide a low-dimensional
representation of the flow that is consistent with DNS, and
that it also gives us the correct solution of the derived dy-
namical system for the initial conditions consistent with the
snapshots, the temporal eigenfunctions �unnormalized�. This
allows us to adjust the computed coefficients so that time
integration of the dynamical system does reproduce the cor-
rect solution.6 We do not claim that this is sufficient for all
purposes; in particular, it is not sufficient for parameter con-
tinuation in Reynolds number in and of itself. However, we
demonstrate here that it is sufficient to capture the correct
asymptotic behavior exhibited by the DNS. This is a neces-
sary first step before gaining validity over a range of Rey-
nolds numbers.

In this work we systematically go through the POD pro-
cedure for some test problems and demonstrate the viability
of this new approach to obtain robust low-dimensional mod-
els at the Reynolds number of decomposition. Moreover, an
example with the Lorenz system shows that this technique
may be extended to a dynamical system obtained by Galer-
kin projection on any set of orthogonal basis functions with
appropriate changes in the implementation.

The broad area of POD research has been active since
Lumley introduced the application of POD to the study of
turbulence in the late 1960s.7 Coherent structures have long
been observed in turbulent flow experiments, such as the Von
Kármán vortex street behind a circular cylinder where it
originates in the laminar flow regime and persists well into
turbulent regime. Numerous papers attest to the success of
low-dimensional models based on POD for many fluid flow
problems. A comprehensive review of work in this field as
well as a complete explanation of the techniques involved
can be found in Holmes et al.1

Finding the optimal basis for a linear decomposition of a

data set is relevant to many fields in mathematics and sci-
ence. The Karhunen-Loève method was initially proposed
�independently� by Karhunen8 in 1946 and Loève9 in 1955.
The method is known by different names depending on the
field of study.10 For example, principal component analysis,
proper orthogonal decomposition, empirical eigenfunction
decomposition, and singular value decomposition are a few
of the alternate names for equivalent procedures. It continues
to be a viable topic for research and application.11,12 More
recently, control applications have utilized the POD for the
creation of low order models that capture the nonlinear dy-
namics of the flow.13,14

The POD has also been used as a nonlinear dynamics
tool applied to nonturbulent flow regimes to extract the spa-
tial and temporal characteristics of the flow. When the POD
is applied to a spatiotemporal data set of an evolving flow, it
simultaneously derives spatial and temporal orthogonal
modes which are coupled. This bi-orthogonality was noted
by Sirovich15 and highlighted by Aubry,16 and can be math-
ematically defined as the representation of a flow field u�x , t�
in terms of basis functions �i�t� and �i�x� such that

u�x,t� = �
i

�i�i�t��i�x� ,

with

�1 � �2 � ¯ � 0

and

��i,� j� = ��i,� j� = �ij .

Typically, the orthogonality of the temporal modes is ignored
since the main objective is the dynamical system based on
the spatial modes. However, this property is used to our ad-
vantage in the present work.

The first paper to apply these tools to flows in complex
geometries was Deane et al.17 That paper constructed low-
dimensional models for flow in a periodically grooved chan-
nel and for flow past a circular cylinder. Two-dimensional
simulations yield a steady flow which gives way to a peri-
odic flow at a critical Reynolds number specific to the prob-
lem. Both flows were studied in the periodic regime and both
proved amenable to representation via low-dimensional
models at the Reynolds number simulated although the long-
term dynamics of both systems were found to suffer from
some amplitude errors even though the system remained in a
stable limit cycle. Also, the four-mode dynamical system for
the circular cylinder was unstable, even though four modes
captures over 99% of the energy. A far more difficult prob-
lem also tackled in the Deane et al. paper, however, was
predicting the flow properties for a range of Reynolds num-
bers from the models. They concluded that low-dimensional
models of bounded flows such as the grooved channel flow
performed better than those of open flows such as the cylin-
der wake in regimes away from the decomposition Reynolds
numbers. The latter was found to be wholly inadequate.

Parameter continuation of these low-dimensional models
remains a challenge. This work addresses one of the major
obstacles to its success, viz. sufficient accuracy in the low-
dimensional model.
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